
AD-AO85 694 ILLINOIS UNIV AT URBANA-CHAMPAIGN COORDINATED SCIENCE LAB F/6 5/7
PROBLEM SOLVING IN A NATURAL LANGUAGE ENVIRONMENT U)
JR. 79 B A GOODMAN N00OIN 75-C-O612

UNCLASSIFIED WP-222N

1111 "16

111112- 5 IIIII. 51.6

MICROCOPY RESOLUTION TEST CHART

LEVELr
i Problem Solving in a Natural Language Environment 6

/ Working Paper D T2"°' " " DTIC
00 ELECTE

' JUN 2 4 198 I

E
Coordinated Science Laboratory/University of Illinois at Urbana/Champaign

Urbana, IL 61801 /

'''I ;Julat79

Keywords and phrases: natural language understanding, problem solving, vague
and complex requests, frames, relational data bases, natural Languasa-frtt-__
ends, JETS, PLANES.

Abtr-t_..

J J

The kinds of requests that can be currently handled by natural
language data base systems are constrained mainly to simple queries to retrieve
information from the data base. The requests must be completely specified by
the user (though certain information can be assumed from past context). This
paper is a proposal for a Ph.D. thesis that explores requests of a more
complicated nature. The goal is to take vague and complex requests from users
and turn them into well-defined problems. Missing information will be filled
in through world knowledge or from the current dialog context. The
transformation of the request into a well-defined problem and the generation of
a plan to solve the problem will be guided by a set of problem solving frames.

DMSRMBUToX STATEMENTf A

Approved for pu1baic release,

-4J
This work) supported by the Office of Naval Research under Contract NOO014-
75-C8612.07 ., .7 0 5 0 7 6

Goodman

Problem Solving in a Natural Language Environment

by

Bradley Alan Goodman

B.S., Carnegie-Mellon University, 1975
M.S., University of Illinois, 1978

Thesis Proposal

University of Illinois at Urbana-Champaign, 1979

Thesis Advisor: Prof. David L. Waltz

- Urbana, Illinois
July 21, 1979 Accession ft~

KTIS GFbA&i
DDC TAB l
Unannoedh

Disatribut on

__* -Vai !yCodes

Dit Avail and/or
D~t/SPecial

July 21 1979

NIONFR~p - . ___ -'M_ I

Goodman

TAB LE F Q0N T E NT S

I Introduction 1

1.1 What is aproblem?..1

1.2 What is asolution?..1

1.3 Finding the correct representation....1

1.14 1IPropose to...2
I.1I.a General and Problem Solving Frames..3
I.II.b Heuristics................3

II Representations for Knowledge..5

11.1 Frames.. 5

11.2 Knowledge Representation Systems...6

III Weaknesses of PLANES..

IV Our Goals in JETS.. 10

IV.1 Problem Solving Frames.. 12

IV.2 Well-Defined Problems.. 12

*IV.3 Purpose of Problem Solving Frames.. 13

IV.4 A Scenario.. 13

IV.5 Handling Vague and Complex Requests... 17

IV.5.a How can the system attempt this problem? 18

V The Approach 22

V.1 Hierarchy of Frames.. 22

V.2 Solving the Problems... 23

V.3 Handling Incomplete Problems.. 24

V.14 Assimilation.. 30

V.5 Efficiency.. 30

____ July 21 1979

Goodman TABLE OF CONTENTS iii

VI Conclusion. 32

APPENDICES 33

A Historical Look at Previous Representations for Problems . . 33

A. 1 State Spaces and Problem Reduction Operators 33

A.2 Generate and Test Paradigm 33

A.3 Predicate Calculus 35

B Other Approaches to Problem Solving 37

B. 1 Expert Problem Solvers 37

B.2 PSI: A Program Synthesis System 38

C Knowledge Representation Systems 40

C.1 FRL 40

C.2 KRL41

C.3 KLONE 42

VII References 46

July 21 1979

Goodman iv

LIST OF FIGURES

FIGURE Page

1. An Interpretation Rule for Sets. 11

2. A Scenario 14

3. COMPARE Frame 15

4. Defining Units. 16

5. An Overview of JETS 21

6. A Simple Example of Problem Solving 25

7. Generate and Test Paradigm 34

8. Overview of PSI 39

9. Sample Unit of KRL[BOBROW, p.g. 10]. 43

10. KLONE Structures(BRAC14K78, P.g. 33]. 45

July 21 1979

Goodman

I

1.1 Mal X U a p roblem?

The answer to "that is a problem?" is, in fact, not at all clear.

Webster's dictionary defines it as "a question raised for inquiry,
consideration, or solution" (WEBSTER]. A problem certainly is related to the
desires of someone to achieve some goal or to obtain certain information. It

is actually easier to define what it means to have a problem than what a
problem is. Having a problem means to "search consciously for some action
appropriate to a clearly conceived, but not immediately attainable,
aim"[POLYA62]. In AI, problems have often been defined as an initial state
and a goal state. Optionally associated with these states are a set of
operators, a set of constraints to follow, etc.

A solution is a process for solving a problem. It is a plan of action
that explains in step-by-step format the course that must be followed to find
the answer to a problem. For the most part there is no agreed upon set of
methods for solving problems. A problem is considered solved when the
solution generated can be "plugged" back into the problem itself to show that
it works. One interesting thing about solutions is that very often they are
the best way for describing a problem.

1.3 Find Mcorrect representation.

A representation is a data type used to define an analogous problem that
we need to solve in order to solve the real problem.(*) It is a notational
device that permits us to express the real problem in a format more conducive
to problem solving. In fact, the better the representation, the easier it
normally is to solve the problem. The best representations normally have
features that correspond closely to those of the real problem so that it is
easy to translate the solution.

The representations chosen are constrained to those that are reasonable
to implement on a computer. This fact should be kept in mind when developing

* In the case of theorem proving, no analogy is needed.

July 21 1979

Goodman Introduction 2

a representation so that the majority of time spent during problem solving is
not wasted on massaging the data representation. This issue of the
relationship between different ways of formulating a problem and the
efficiency with which the computer can be expected to find a solution is a
prerequisite to the design of procedures to automatically construct an
appropriate representation for a problem.

1.4, p ropose to...

One of the central issues in a natural language question answering
environment is how to convert vague and complex requests into an internal
representation that can be characterized as a wel-efined problem. Well-
defined means that the problem statement itself, when coupled with world
knowledge (from the data base and past context), is sufficient to permit a
solution.

This problem has not been tackled in previous question answering or
general problem solving systems. The closest attempt at handling complex (but
not vague) problems would be by the expert problem solvers that are designed
to work in one environment. These systems contain a fairly complete knowledge
base of important facts in a domain. Existing systems have expertise in
organic chemistry (DENDRAL (FEIGENBA]), medicine (MYCIN [SHORTLIF]) (INTERNIST
(POPLE]), and knowledge base construction (TEIRESIAS (DAVIS76]). They are
generally menu-driven (i.e. multiple choice questions are asked of the user),
making it easier to force the user to specify a problem completely. A large
data base of production rules is used to encode specific knowledge about the
domain. The systems typically work by initiating a dialogue (via a set of
multiple choice questions) requesting information for their short term memory
until production rules begin firing, giving suggestions or requesting more
specific information.

My proposal is to go significantly beyond the work done with expert
problem solvers in the following ways:
(1) My system will allow a user to communicate his or her problem in English
to the system instead of via a sequence of answers to multiple choice
questions.
(2) It will not limit itself to one very specific domain. For example,
DENDRAL's principal problem solving ability involves deciding what the
chemical structure of an organic molecule is when given a mass spectrogram and
chemical formula of the molecule as input. While the task of identifying a
chemical structure is very involved, the statement of the problem itself is
limited to a very narrow channel (the spectrograms and formula).

TEIRESIAS [DAVIS76] is not quite as limited; it allows an expert designer
to enter through a dialogue the production rules which encode TEIRESIAS'
knowledge. Davis also encoded production rules that know general things about
other production rules and cause those rules to be updated, depending on
changes to the knowledge base.

(3) MY system will handle vague as well as complex questions. Vague gLions

July 21 1979

Goodman Introduction 3

are incompletely specified, i.e. certain relevant information is missing.
There may also be irrelevant information that must be detected and ignored.
Com2lex g are ones that go beyond a simple request for direct
retrieval of information. They can be long descriptions of a task to be
performed rather than single sentences. They may require higher level
processing (e.g. analysis) than can be specified in a formal query.

I. 4. a General and Problem Solving friZ u

Problem solving frames are to be used to encode some of the kinds of
common-sense problem solving skills people have. People know many ways to
solve simple problems and have the ability to ignore irrelevancies to get to
the heart of a complex problem. Continued thinking about a problem can result
in a narrowing (and, every so often, expanding) of the concepts thought to be
important in a problem. Eventually a group of relevant concepts will result.
In essense, these relevancy judgements result in the focussing of one's
attention to the essential features of a problem--resulting in an increase in
efficiency.

The eneral k g fr*Aes in my proposed system will encode small
"chunks" of information about concepts that people can use when trying to
focus on the important facets of a problem. They will store information about
concepts, events, information in the data base, etc. (the detailed data base
information concerning relations, field names, etc. will be stored in a model
of the data base). These chunks allow people to ignore details that will most
likely be useful only when actually executing a plan to find an anslwer; they
make it easier to judge what is relevant in a problem statement. They also
make it easier to choose a methodology for solving the problem because fewer
details will have to be checked when deciding whether or not a particular
solution technique applies.

Heuristics appear to encode a fair amount of the problem solving skills
people use. One important group of heuristics are those that will be used (in
conjumction with the general knowledge frames) to help choose what aspects of
a problem statement are important (and at the same time, filtering out
irrelevant information). I feel the following heuristics are beneficial and
should be employed in my system:

1 Initially assume each English sentence defines 2M particular (mutually-
exclusive) aspect of the problem. This is used to help begin the search
for relevant problem solving frames. Once a frame is activated, it can go
beyond the particular sentence that activated it to look for more
pertinent information (it can look not only at the other sentences in the
user's request but it can examine the "everyday" knowledge stored in the
general knowledge frames).

2 In each sentence, look for relevant information [HAYES]:

July 21 1979

-L

Goodman Introduction 4

(a) look for phrases describing time,
(b) try to identify when groups of objects (sets) are specified,
(c) give questions higher priority than other input, since they are likely
to be highly relevant,
(d) look for phrases describing concepts, events, etc. that have been
recently mentioned (i.e. use past CONTEXT to aid in understanding the
request),
(e) assign a "weight" to each piece of information found (both relevant
and irrelevant),
(f) process the concepts that seem most relevant first;

3 for each relevant concept found, find the general knowledge frame that
describes the concept, and fill it in with the particular details; having
a general description will make it easier to make inferences.

When trying to find problem solving frames that can'be used to help solve the
problem, the system will: (1) examine the concepts marked relevant according

to the way they were weighted, (2) select the best sequence of candidate
problem solving frames, and (3) order the problem solving frames.

The detection of an incompletely-specified problem is an important task
in problem solving. The set of problem solving and general knowledge frames
selected above will be examined (in order) to see if any information tagged
important is missing from the problem statement. Since the level of
description of a concept in the frames may differ from what is in the problem
statement, the system must take the most specific of the two descriptions and
generalize it (using information in the general knowledge hierarchy). Once
generalized, it should be possible to tell if the two concepts are similar.
Once this is known, then iore specific information found in the frames can be
added into the problem statement to make it complete (the user will be
informed, and asked if, the information added is correct).

July 21 1979

I A"

Goodman 5

II

Representations Sr Knowld

There is a need for a new representation for problems and their solutions
for use in a natural language environment. Problem solving, like language
understanding, involves organizing a large memory. It is desirable that any
representation structure selected be more "natural" (i.e. easier to translate
to and from English) than those of the predicate calculus formalism and be
similar in design to those used by the rest of a natural language system to
store the general knowledge about the domain of discourse. This is
particularly important because the problem solving mechanism will need to
interact closely with the general knowledge structures to apply its expertise
to a particular domain.

I.1 Frames

A frame [MINSKY75] CTENNAN80]is a specialized data structure that can
represent some concept (i.e. knowledge about a very limited domain).
Languages for writing frame systems usually have associated with them a set of
functions for defining frames and for storing and retrieving values from them.
A frame is composed of a group of slots where each slot defines one aspect of
the concept represented by the frame. These slots can be assigned particular
values or can have default values assigned to them. Procedures can also be
associated with a slot and can become activated depending on the values stored
in the slot. Slots can also point to other frames where a deeper explanation
can be found for that particular aspect of the concept represented by the
frame. Frames are connected to other frames through the use of links. These
links set up a hierarchy of frames, one of which is based on
SUBCONCEPT/SUPERCONCEPT relationships. One can move up and down these links
to pass information--with more specific frames "inheriting" information from
an ancestor.

Before one can use frames to portray some thought or concept, must first
try to find a particular frame in the frame system that encompasses most of
what one wishes to represent. One can then form a specific "instance" of that
frame using the particular details of the thought or concept. When this has
been accomplished, the frame is said to have been "instantiated". The
instantiation of a frame could be deactivated at any time should the topic
under investigation change or should a better match be found when more details
become available. The next step requires searching for properties not in the
frame through the inheritance mechanism (or via frame transformation, analogy
links, context-relatedness links, etc). A couple of capabilities provided in
some frame systems, that demonstrate the use of this mechanism, include the
ability to compare two frames to each other and to view the concept
represented by one frame as that represented by another. To compare two
frames to each other, deductive rules can be applied by the frame system.

July 21 1979

Goodman Representations for Knowledge 6

Such a set of general rules might check if the two concepts under comparison
have common ancestors under subconcept/superconcept links. Frames can also be
used to view one thing as another. The procedure to view one concept as
another must first try to generate a mapping between the aspects represented
by the slots of the frame depicting the first concept to those of the second.
When this is achieved, the mapping can be used to generate another mapping
that can map the "values" of those slots onto each other.

11.2 Kowledge Reoresentation Systems

Several general knowledge representation schemes have been proposed over
the last several years. FRL (Frame Representation Language) EROBERTS], KRL
(Knowledge Representation Language) EBOBROW] and KLONE EBRACHM78] are three of
the major representations. FRL is by far the most primitive--providing the
user with a set of procedures to build up a hierarchy of frames but leaving
the details of the structure itself to the user. KEL is an attempt to unify
procedural knowledge with declarative forms. KRL claims to be both a high
level AI programming language and a theory of knowledge representation. KLONE
is built around a semantic network structure. The network, however, employs a
fixed set of primitive links instead of links that can be defined to be
anything. This makes any relationship shown in the network easier to
understand. KLONE also provides means for the properties of one node to be
inherited by others. (I)

* See Appendix C for descriptions of these knowledge representation
systems.

July 21 1979

Goodman 7

III

Wekese al PLANES

The PLANES system was designed to accept questions in English from casual
users about aircraft maintenance and flight data in a subset of the U.S. Navy
3-M (Maintenance and Material Management) data base. The system was designed
to handle complex syntactic structures, abbreviations, pronoun reference and
ellipsis. It tried to give back explicit answers and not just retrieve a
file. Minor errors--such as spelling and grammatical errors--were tolerated.

Parsing of inputs in PLANES involved four operations: (1) putting all
words and phrases in canonical form and correcting spelling; (2) matching
against prestored phrase patterns (ATN subnets) and setting a context register
(history keeper); (3) matching the context register values against concept
case frame patterns; and (4) filling in missing contextual information needed
to form a meaningful query. The most difficult but valuable task was the use
of the concept case frames. Concept case frames enumerate the kinds of
questions understood by the system. They consist of an a=t (which is related
to a verb) and a list of noun phrases (referred to by subnet/context register
names) hich can occur in a meaningful way with the act. As an example,
concept case frames synonymous with reguire might be (*require 'planetype
*maintenance-type) and (*require 'part *maintenance-type). Together with the
ATN subnets, concept case frames form a semantic grammar (HALLIDAY].

When constituents of a sentence are missing (as in ellipsis) or replaced
by pronouns or referential phrases, the system can suggest what type of phrase
is necessary to complete the concept by finding all concept case frames which
match the rest of the sentence. If only one concept case frame matches, we
are done; if more than one matches, then the reference to which constituents
were present in the previous sentence is usually adequate to decide which one
to use. If more than one concept case frame remains, the user is asked which
referent is correct.

The query generator [GOODMA77] allows the system to construct formal
queries directly from the semantic constituents of a request--even when no
concept case frame matches the request. The query generator must: (1) decide
which relations (files and card types) to look at to retrieve the information
necessary for answering the user's request; (2) decide what domains (data
fields) to return from the relations which are searched; (3) decide what
semantic constituents should be represented as predicates; (4) decide what
operations should be performed on the fields returned; (5) translate field
values into internal data base codes; and (6) decide how to arrange the output
data. The query generator utilizes heuristics to analyze the semantic
constituents in order to generate the information mentioned above to construct
a formal query. It is capable of handling most of the simple requests made of
PLANES.

Numerous weaknesses with PLANES stood out after tests with casual users
were performed in early 1978 [TENNAN79]. PLANES could handle only simple

July 21 1979 i

Goodman Weaknesses of PLANES 8

requests--single sentence inputs rather than long descriptions of the task to
be performed. No complex requests--beyond the extraction of value(s) from
field(s) over a set of constraints and the application of unsophisticated
functions to those fields--could be analyzed. The complexity of the kinds of
questions answerable by PLANES can be seen below.

how many A7s flew > 10 flights in 1973?
in 1972?
how many did they fly in 1974?
what maintenances were performed on it between

May 16 and 17 1969?
for planes 3 and 5, how many catapult flights

were flown between jan l and Jun 30 74?
how man- flights and flight hours were flown by

plane 3 in Jan 73?

The responses to inquiries to the system could only be in one of the
following forms: (1) the value(s) of a field found during the data base
search; (2) the result of applying simple functions such as SUM, MIN and MAX
to the values; (3) a table showing the values for several different fields;
and (4) a histogram showing the corresponding values of two fields. This
means that no analysis of the retrieved data is performed by PLANES. All the
processing of the data had to be done in the query langauage itself (and in
one query only) instead of leaving more complicated processing to experts.
Below you will find some requests that are relatively simple, but,
nevertheless, difficult to _ver answer in PLANES.

Find the maintenances that take the longest times.
Which maintenances occur most often?
Compare the flights flown by ship-based planes as

opposed to land-based planes during June 1972.
Were the number of maintenances performed to those

planes very large?

PLANES lacked a "good" internal representation of the problem asked by
the user. A filled-in concept case frame was the only representation of the
semantic interpretation of the request. Thus it provided an unordered list of
the constituents of the initial request classified by semantic categories,
along with some "hints" on how to generate a formal query to answer the
request. The problem solving frames that I describe later actually stem from
the way I originally envisioned concept case frames. They originally were to
provide detailed knowledge about the domain of discourse, the structure of the
data base, and ways of solving problems. Thus, my actual implementation for
PLANES ended up being far short of my original conception.

Another problem with PLANES was that there was no easy way to try to
recover from misunderstood requests because no "partial" understanding was
possible. The system could only take the phrases that were parsed, and, using
heuristics, "guess" what the user really asked. These heuristics used no
world knowledge but simply relied on general facts such as a field name parsed

July 21 1979

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 7 L- ,~l - ""-i,&"= I• -

Goodman Weaknesses of PLANES

with a particular value could be used as a predicate in the formal query and
ones parsed without a particular value are probably fields whose values are to
be returned. The addition of knowledge about the domain would have made it
possible to make more intelligent guesses about what the user wanted and could
have at least made it possible to ask the user intelligently to fill in
particular gaps.

All of the above mentioned criticisms for PLANES can most certainly apply
to other natural language data base systems that exist today. (*) I hope to
attack this set of general, pervasive problems and not just those inherent in
PLANES.

Im

0 I have personally had contact with the RENDEZVOUS system (CODD] and
have used the parser for the LUNAR system [WOODS72]. An attempt to solve some
of these problems is being attempted by the RENDEZVOUS group [HEMPHILL].

July 21 1979

Goodman 10

IV

Q=Goals a

The evaluation of the PLANES systea CTENNAN79] led to the realization
that the performance of a question answering system can be divided into two
parts. The first part, the conceptual ,.overage of a system, is the set of
concepts the system can handle. The second part, the linguistic coverage of a
system, is the set of linguistic features that have been incorporated to
permit variations in the way concepts are referenced. Linguistic converage
encompasses such things as syntactic structure, ananhoric reference and
ellipsis. Whether or not the conceptual and linguistic coverage is adequately
represented in the system can be discovered by monitoring the handling of
user's requests to the system. These measures have been called conceptual and
linguistic completeness, respectively [TENNAN79].

To make it feasible to provide a wide conceptual coverage of the data
base and its contents, of the events the data describes, and of the
interaction between JETS and a user, a large store of knowledge must be
created. We have decided to organize the knowledge of JETS into a network of
frames. The frame will be our basic unit of representation. Most individual
frames will be linked into the network using generality/specificity links.
This will put the most general concepts higher up in the tree of frames and
information can then be inherited down the tree. One nice feature of such a
hierarchy is that it promotes the use of the most general concepts first when
trying to interpret an input.

We have decided to implement the conceptual component of JETS in FRL-the
language for building frame-based systems mentioned earlier. FRL was chosen

A because it was implemented at a level primitive enough to allow us much
flexibility in defining our own set of knowledge structures.(*) This was
particularly relevant because the implementation of JETS requires representing
so many different kinds of knowledge--knowledge about the data base, the
domain, the user environment (context, etc.), the query language, etc.

The use of frames in JETS will be done primarily by a set of
interpretation rules. These rules will be implemented as production rules.
Each rule will have a pattern or condition to match and an associated action
to be performed. Implementing the interpretation rules as a production system
will make it easier to insert and delete rules. Thus the range of the
semantic interpreter can be expanded and contracted without having to
understand or change the other rules. An example of an interpretation rule
for sets can be seen below in figure 1 [FININ79].

* FRL is so flexible that it should be possible to implement both KRL and
KLONE using it.

July 21 1979

Goodman Our Goals in JETS 11

if <concept> modifies a <set> then:

find the typical member of the <set>.

find an applicable rule which interprets the
modification of tvical member by <concept>.

invoke the rule on the tvoical member.

invoke the rule on each of the members of the /
<set>.

return the newly modified <set>.

An Interpretation Rule for Sets

1 figure 1

1July 21 1979

Goodman Our Goals in JETS 12

IV.1 Problem Solvina Frames

The description of JETS so far has centered around ways of expanding the
coverage of the system. However, nothing has been done to help the system
develop a 21M to extract the required information from the data base in the
form the user intended. This is where problem solving frames are introduced.
Problem solving fra,-es are to be used to describe problem domains and search
strategies. They can range from very general sketches of a particular series
of problem environments to specific suggestions on how to answer a certain
request. The latter problem solving frame might even be encoded in English
where a sequence of English instructions are given on how to put all of the
information together at the end to answer the main request. Problem solving
frames will have to work jointly with the frames used during the parsing and
semantic analysis stages. Those frames describe the objects and events of the
JETS' environment and how they are related to the data in the data base.
Information gathered by those frames can be used to extract appropriate values
to fill the empty slots in the problem solving frames in order that the whole
frame may become instantiated.

IV.2 Wel-Def dng Problems

Before describing the details of problem solving frames, a description of
what a "problem" is should be discussed. A well-defined problem has been
defined in the literature [NEWELL72] to satisfy the following criteria:

1 the problem is expressed in terms the solver can understand,

2 all information necessary for solving the problem should be in the problem
statement itself and in the world knowledge available to the problem
solver,

3 the form of the solution is exactly specified, and

4 there must be a systematic (algorithmic) way(s) for testing a proposed
solution.

In our natural language query system environment (in particular with our
experience with PLANES) we find that many requests by users are not normally
well-defined, i.e. they do = satisfy the criteria above. Before such
requests can be handled, it is necessary to make the request a well-defined
problem. Previous systems have brought in this additional knowledge primarily
through two sources--using past context to fill in missing information and/or
asking the user directly for it [WALTZ78] [CODD78]. I want to introduce the
use of world knowledge as a third way of obtaining such information. At the
same time I want to use the world knowledge to detect requests not answerable
with data available in the data base.

July 21 1979

Goodman Our Goals in JETS 13

IV.3 Purose 9r Problem Sling irAM

Collecting together such information still does little for bringing the
system closer to developing a plan for answering the request. The problem
solving frames are to propose general techniques such as problem reduction
(reducing a problem to simpler subproblems)--for solving problems. To be able
to develop a set of problem solving frames that classify problems and
techniques for solving them, we must categorize the "kinds" of problems
encountered in our data base environment (based on the assumption that the
data base world restricts us enough so that the number of interesting classes
of problems is manageable). Our studies have shown that the following kinds
of requests occur most often: statistical analyses (correlation of data,
etc.), categorization (classifying data into categories), association of data
types with each other, ranking ("top five", etc.), plotting, causality, very
general inferencing and operations on sets.

Another major contribution would be the ability to provide different
"views" to a problem and to the values stored in the data base. In essence an
"overlay" of the data base could be generated for a particular problem. An
example would be data stored in a daily format in the data base viewed as if
weekly data existed. This same mechanism could be applied to bring two
seemingly disjoint concepts in a problem together.

IV. L Scenario

A sample scenario of the use of problem solving frames can be seen in
Figure 2. They are activated by key words and phrases in the user's request
and as side-effects to the instantiation of particular frames during the
semantic analysis stage of JETS. The activated frames analyze the request to
decide if they can provide any guidance in formulating a plan capable of
rendering a solution to the problem. If no such assistance can be offered,
the frame is deactivated; otherwise control is passed to that problem solving
frame. Figure 3 gives an example of a problem solving frame for
comparison.(#) Notice the use of production like rules that associate
specific conditions and actions. These actions include drawing in other
problem solving frames and invoking specific functions such as MAKE-UNITS-
EQUAL which tries to convert the units of measurement (time, length, etc.) of
the individual fields into equivalent forms. Figure 4 demonstrates this
concept by exhibiting the hierarchy of unit frames and by presenting an
example instantiation for the phrase "... 54 minutes ... ".

In summary, the value of this type of frame is that it provides a general
forum for taking all the information provided by the frames instantiated
during parsing and semantic analysis and analyzing it so that a program can
be generated to answer the question. In other words, it is not responsible
for writing a program at the formal query level but only to decide what

* The frames in our system are actually being written in FRL but the
examples in this paper were written in a more simplified form for readability.

July 21 1979

Goodman Our Goals in JETS 14

U: Compare NORS and NORMUS percentages by squadron and by wing for May 73.

J: Invoking COMPARE frame. invoking PERCENT frame.

NOR (Not Operationally Ready) not in the data base. It can be obtained by
ADDING NORS (NOR due to Scheduled Maintenance) and NORMUS (NOR due to
Unscheduled Maintenance).

SQUADRON partitions the existing planes up. No such data is stored in the
data base. Such partitioning can be done by:

1 plane serial number
2 plane type
3 none of the above

Please select one of the above:

U: 2

J: WING linked to SQUADRON. PLANE TYPE absorbing WING.

I have interpreted your request as follows:

1 Retrieve NORS, NORMUS by plane types for time period of May 1973.

2 Form NOR=NORS NORMUS.

3 Generate NORS%=NORS/NOR and NORMUS%=NORMUS/NOR.

4 Construct table of PLANE TYPE, NORS percentage, NORMUS percentage.

5 List by PLANE TYPE the maximum of NORS percentage or NORMUS percentage.

Does this satisfy your request?

U: yes

J: Executing...

PLANE = NORS% N1RMI
A7 71% 29%
F4 55% 45%

SKYHAWKS 27% 73%

A7: more NORS
F4: more NORS
SKYHAWKS: more NORMUS

A Scenario

figure 2

July 21 1979

Goodman Our Goals in JETS 15

Invoking Concept:
COMPARE, MORE, LESS, CORRELATE, ANALYZE,

Context(s):
Requires instantiation of two or more entities
to compare:
(1) one FIELD over two or more ranges, or
(2) two or more different FIELDs: FIELDi,

FIELD2,....

Actions:
Context2 (1)
if FIELD.TYPExnum & CONCEPT~more

then invoke greater;
if FIELD.TYPE=num & CONCEPT~less

then invoke less;

Contextz(2):
if FIELD1.TYPEznum & FIELD2.TYPExnum

& CONCEPT smore
then invoke greater;

if FIELD1.TYPEznum & FIELD2.TYPE=num
& CONCEPTzless

then invoke less;
if FIELD1.TYPE=num & FIELD2.TYPEzset

& CONCEPT =more
then invoke cardinality-of-set

I invoke more;
if FIELD1.TYPExnum. & FIELD2.TYPE=num

& CONCEPT =compare
then invoke find-relationship;

if CONCEPT zassociate
then invoke check-correlation

invoke find-relationship;

Global Actions: make-units-equal

COM4PARE Frame

2 figure 3

July 21 1979

Goodman Our Goals in JETS 16

Make-Units-Equal

UNITS

TIME DISTANCE ...

HOUR DAY WEEK... METER INCH ...

E.g. "... 54 minutes

MEASURE3

ee time7

TIME7

J n-+0
end = +54

= minute7
i make-units-normalized

MINUTE7

normahzed-bezin = +0
normalized-end 2 +3240

= seoond

Defining Units

figure 4

July 21 1979

Goodman Our Goals in JETS 17

question to answer, to break the question up into a sequence of simpler
requests if the question is too complex, to provide higher level
mathematical/statistical analysis of the data returned, and to call on a
formal query generator to generate the actual formal query.

IV.5 UagDLJA Vague and Complex gejuests

Vague and complex requests can be handled in a couple different ways.
One way is by finding a problem solving frame that matches the request almost
exactly. These are the type of problem solving frames not yet described.
Each frame will consist, in essence, of a sequence of simpler commands, where
each simpler command is either the sort of question which can be understood
directly, or another command which can ultimately be broken up into a sequence
of questions that can be answered. They will also be used to generate
dialogue with the user when vague terms must be further explained before a
formal query could be generated (e.g. defining "worst" for the particular user
and question).

In JETS, this kind of problem solving frame is useful for report
generation. The following describes what a problem solving frame for requests
like "Does trend analysis of failure and maintenance rates for all aircraft
differ significantly from the corresponding rates of new aircraft?" would have
to do.(*)

1 define "differ significantly" (user-defined or system default),

2 retrieve for each maintenance action X whether it was scheduled or
unscheduled and time since last maintenance on same system,

3 form maintenance rate for each maintenance action,

4 project trend of maintenance rates by linear regression,

5 calculate average mean time between failure,

6 apply (1) through (5) to new aircraft,

7 generate table of trend of failure rate and maintenance rate for all data
vs. trend of failure rate and maintenance rate for new aircraft, and

8 compute standard deviations for the trend of failure rates and maintenance
rates for all aircraft and for just new aircraft.

The problem solving frame writes all of the program required except the
generation of the basic formal queries (the ones that retrieve the actual
fields used to calculate the failure and maintenance rates) which are
generated by the formal query generator CGOODMA77].

0 Taken from list of questions most asked by 3-M Naval personnel[NALDA].

July 21 1979

Goodman Our Goals in JETS 18

If no direct match is found in the problem solving frames, the system
will use the second method to handle the vague and complex request. This
method involves trying to turn the request into a well-defined problem. For
example, we will consider the same vague and complex request as discussed
above:

"Does trend analysis of failure and maintenance rates for all aircraft
differ significantly from the corresponding rates of new aircraft?"

IV.5.a = .,_, system attempt . rbl m

The ability of the system to handle requests of this nature revolves
around its competence in locating and using pieces of problem solving
knowledge coded into the frames and heuristics. Below is a sequence of steps
the system might follow in planing how to solve the above problem and
explanations of where they come from; I hope the steps give a better idea of
the kinds of knowledge the system must contain. The order in which the items
are considered is based upon the arrangement of the constituents in the
sentence and due to heuristics and information in the frames.

(a) How should "r'intenance rate" and "failure rate" be internally /
represented?

The system must determine what "maintenance rate" and "failure rate"
mean in this context since the terms do not appear directly in the data
base. "Rate" could possibly have at least four different
interpretations: (1) mean time between events; (2) fraction of time a
particular state is in effect; (3) percentage of times when eventl
occurs given the occurrence of some other event2; or (4) number of
events per time period. The most likely interpretation for "failure
rate" would be (1) followed, in order, by (4), (2) and (3). The right
interpretation can be judged by noting that "failure" is an event, so
(2) is unlikely since it involves st ; no other event is listed nor
can one be inferred easily, so (3) is unlikely (contrast "safe landing
rate" which suggests, via safe, some other event (e.g. "unsafe
landings" or "total landings")); (4) could be eliminated by a priority
scheme favoring (1) or, since (4) is actually so closely related to
(1), it perhaps doesn't even deserve a special status. For
"maintenance rate", the best interpretation would probably be (1)
(though (4) would be feasible, too). The decision of which
interpretation to use could be deferred until other global factors
(such as "what is trend analysis?") are considered. One nice feature
of interpreting "rate" in this way is that it makes it easier to
decipher the meaning of other v'ates such as lanling rate (definition
(4) seems to fit best), crash rate (definition (4) fits best), Aafe
landin rate (definition (3) seems best as mentioned above), etc.
Another important consideration here is that a "failure almost always"
results in a "maintenance" so the system might want to omit any
maintenances that were due to failures (i.e. unscheduled maintenances)
from the list of maintenances when computing "maintenance rate".

,lulv P1 1Q7Q

Goodman Our Goals in JETS 19

(b) How will "mean time between failure" and "mean time between
maintenance" be computed? (assuming these were chosen to represent failure
and maintenance rates, respectively)

This will probably be the most difficult step in the plan for the
system to come up with (in fact this one part of the overall plan is a
complex problem in its own right). This is the point where what is
available in the data base must be tied into the user's description of
what is wanted. This involves breaking up the definition of "mean time
between failure" and "mean time between maintenance" into components so
that they can be calculated. Since no "mean times" are stored directly
(and this fact would have to be discovered while examining the data
base model), the system must calculate them by looking at each
maintenance action on a plane, determining if the maintenance was
scheduled or unscheduled (which implies a failure occurred), and
recording the date of the maintenance. Standard deviations, etc.
should also be calculated since the system may need them later. It
would be desirable to keep some detailed data about this processing
around for follow-up questions. The system should also consider saving
the quantities calculated in partitioned sets, by time, plane serial
number, etc. It might turn out that the overall failure and
maintenance rates may be all that will be needed, but the system can't
know for sure at this point. Both options should be kept open, in the
hope that other information will aid in choosing one or the other
interpretation. Otherwise the highest priority or lowest cost
interpretation could be chosen.

(c) What does "all aircraft" designate?
The system must decide if it really wants to look at AlU aircraft for
aUl dates or to Just consider a sample. This might be a place where
the user should be requested to be more precise (especially should
cost-estimates show that the search over all aircraft for all dates is
too expensive). Other possibilities include basing the statistics
gathered on a small group of "typical" aircraft selected for use in
problems like this one. Later the system may have to come back and
consider whether "new planes" should be included in "all planes" or
does "all planes" mean "all except new planes".

(d) What is "differ significantly"?
The best case of all would be if the decisions made at the time when
"mean time between failures" and "mean time between maintenances" are
handled set up expectations for appropriate tests of significance.
Those expectations would make it easier to choose from among the
following possible definitions of "differ significantly": (1) given
two numbers, check for the percentage by which they differ (not
precise, but fits our common-sense interpretation); (2) given two
groups of numbers, compute their means and check to see if they fall
within two and one-half standard deviations of each other (or some
standardized statistical criteria); or (3) given two sequences of data,
check to see if they are correlated.

(e) What does "corresponding rates" refer to?
This will most likely be interpreted by the parser and semantic
interpreter. The difficulty is that the system will have to realize

July 21 1979

Goodman Our Goals in JETS 20

that "corresponding rates" refers to the earlier rates--failure and
maintenance. The examination of a general knowledge frame describing
"correspond" would help resolve this.

(f) What are "new aircraft"?
The system must decide how far in time should go from the date an
aircraft begins service and still consider the aircraft "new". The
system could pull in a general knowledge frame that defined "new" or
could ask the user directly "how new is new?".

(g) What is "trend analysis"?
The system can examine its general description of trend analysis and
decide what particular method (e.g. linear regression) should be
applied here. Trend analysis involves the projection (or
interpolation) of a sequence of numbers over time. Before it can be
performed, it is necessary that a sequence of numbers be collected.
This ties in with the "failure and maintenance rates" except that trend
analysis needs a sequence instead of just two numbers. This might
suggest the further partitioning of "failure and maintenance rates" by
how old an aircraft is (e.g. group together all "one year old"
aircraft). Hence an attempt to fill a descriptor in the "trend
analysis" frame has propagated back to cause us to prune and reorder
our options (instead f b tracng) for looking at an object that we
had previously interpreted. This demonstrates the use of problem
solving frames to help turn a problem into a wel ined problem.

(h) How should the answer be displayed?
Heuristics could help decide when it would be useful to generate a
table (graph, etc.) to display the data returned. The question
actually asks a yes/no answer, but clearly this alone is inappropriate.

(i) What information should be saved for follow-up questions?
The lower level information that will have to be retrieved from the
data base might be useful in answering follow-up questions about
specific areas of the original problem. Must decide what parts of the
data should be saved and how it should be grouped. The hope is to
avoid duplicating searches of the data base for information that was
just retrieved in an earlier query.

A diagram showing the structure of JETS can be seen in Figure 5.

July 21 1979
=< -L _ - = = : '-- - - - .i ,_L -'± -A .. .,,_: I'.-- i ,,,,,. :. .- ,.,_

Goodman 21

general kcnowledge

user semantic-- --- .

interface interpretation -

.%" problem-solving

solving the problemI
(jformulating a plan) 4

data-base specific
information

divide into
simpler problems

coEtex

I generate program to I (pointers to other
I solve each of them other frames,frms

1instantiatedfrms

I I optimize

qur g___e__ators

4L-

~qegenerat orth r' /w

integrate the answer
into the context

An Overview of JETS

figure 5

July 21 1979

Goodman 22

V

1he Approach

V.1 Hirach Frames

The problem solving frames are general descriptions of problems (and
solutions). Much more power could be milked from the concept of problem
solving frames if the frames were loosely tied together in a hierarchy
network. This hierarchy of problem frames would work as follows. The system
of frames start at a very general level describing the nature of the problem
environment and proceed on down to the particular domain in question. The
information found by threading one's way down the hierarchy can be used to
help develop a mapping between the general problem solving frames and the
user's description of his or her problem.

Much of the work involved in solving a problem is spent trying to define
"imprecise" terms in the problem statement itself. Such terms include "best",
"worst", "typical" and so on. While in many cases the system will have to
consult the user directly to define such terms (*), a separate hierarchial
structure describing the meaning of these terms can be constructed and linked
into the problem solving frames hierarchy. Below are a few segments of such a
hierarchy showing the names of concepts that might be represented in it.

thing superlative

typical-thing bad good

typical-physobj worst best

typical-3 fm-aircraft

(0) These definitions can be saved under a particular user's name for
future reference--allowing us to develop a model of the user.

July 21 1979

Goodman The Approach 23

V.2 Sovi. i h Problems

The basic description of the kinds of representation structures for
problems was found in the last chapter (e.g. in the COMPARE frame example).
The value of such structures, however, relies heavily on the ability to relate
descriptions of specific problems to the general descriptions referred to in
the problem solving frames. The need for very general and powerful matching
routines can be seen if the problem solving frames are going to work. The
matcher must find matches between an element of the user's depiction of a
problem and an element of the models of problems by trying to "fill" the slots
of the model. Items from the user's problem descriptor, which satisfy slot
descriptors of the problem models, fill the slots and can be said to match the
slots. The matching routines must find when "gaps" exist between a general
description of a problem environment and an actual user description of a
problem--extracting information from the knowledge base, past context or
through dialogue with the user to fill the gaps.

Several problem sol,:ing techniques can be employed during the matching
process. These include analo, m and heristic

reasoning. Analogy involves trying to find a mapping between the set of
problem descriptions and the user's actual request. If an almost perfect
match exists, analogy is reduced to a task of indentification--identifying the
problem with known solutions. The analogy process can be divided into three
phases: map, solve and lift (BROWN].

(1) Map

When the user's request cannot be solved immediately (because the problem
is too complex or incomplete), it is necessary to try to map the problem
into an analogous problem described by a If& of problem solving frames.
The process first involves summarizing the user's problem, leaving out the
specifics, so that it is easier to explore the problem solving frames for
possible partial matches. When matches are found, a simple mapping can be
constructed. This mapping must be extended to include some of Lhe details
left out of the summary of the user's problem. When the map is finally
finished, it can be employed to fill in the slots of the problem solving
frames with the details of the original problem (the values going into the
slots might undergo transformations during the mapping process as well).
The result of this will be an analogous ia problem.

(2) Solve

The set of problem solving frames activated during the map process can be
used to solve the analogous problem during the solve process. Since the
problem solving frames not only describe problems but also ways of solving
them, the solution techniques described by them should be put together to
solve the problem. If no solution is found (and this is possible when the
problem is mapped onto several problem solving frames whose solutions
might possibly compete against each other), then the analogy map must be
changed or the analogous problem must be altered by adding further
details. When a solution is found, an inverse map is applied to it. If
feasible, the answer technique that makes up the solutton L3 checked to
see that it works.

July 21 1979

Goodman The Approach 24

(3) Lift

If the solution technique works, then we need to "lift" the solution from
the problem solving frames back into the user's domain. This process is
done by taking the plan constructed for solving the problem and, for each
single step of the plan, applying the inverse map to it. It is possible
that some parts of the plan are incomplete after being mapped back into
the user environment. If this occurs, an attempt is made to patch up that
part of the plan. If this fails, another analogy must be tried. If all
parts of the plan can be lifted, then the plan is lifted, applying patches
as necessary so that the plan fits in the user domain.

Decomposition is the technique of dividing the problem into subproblems
that are (hopefully) easier to solve[POLYA57]. In reality, the hope is that
problems can be reduced to simpler subproblems repeatedly until primitive (but
solvable) subproblems are reached. Once this is achieved, it is easier to get
a solution for the original problem. This fits very naturally into the
hierarchy of problem solving frames environment because the frame system
itself divides up components of a problem into simpler conceptual structures.
These structures often correspond directly to the more primitive problems
referred to in the decomposition process. The opposite process, which must be
used after the success of decomposition, is recombination--putting together
simple problems (or solutions) so that the principal problem can be solved.
Recombination could also be a principal force in solving a problem. A user
might input his problem in several steps. In that case, it might be necessary
to combine the individual steps into one problem when looking for a match in
the problem solving frames (i.e. map from many to one instead of the normal
one-to-many).

Heuristic reasoning involves making intelligent stabs at solving a
problem when the other techniques cannot be used. For the most part,
heuristics will be used to try to get the problem description into a form so
that one of the other problem solving techniques applies. They can, on their
own, sometimes suggest how to solve a problem. The PLANES query generator
[GOODMA77], which was based entirely on a set of domain-specific and domain-
independent heuristics, was able to handle the majority of simple requests.

An example showing the use of these techniques can be found in Figure 6
below.

V.3 Handling Incomplete Problems

The detection of incompletely-specified problems is an important task in
a problem solving world. Once it is detected that some information is
missing, the problem statement can be brought up to par by:

(1) searching recent context;

(2) using world knowledge; and/or

(3) asking the user directly to fill in the gaps.

July 21 1979

Goodman The Approach 25

Problem: Constrast NORS and NORMUS percentages by squadron
and by wing for May 73.

'transformations done in semantic analysis
and beginning problem solving (actually,
ouput would be set of filled-in frames

land not an English sentence like below)

Compare [NORS/(NORS.NORMUS)] and
[NORMUS/(NORS+NORMUS)2 by plane type fra
4ay 73.

Frames instantiated:

user problem descriptor frame

operation =compare
objecti 2 percentl
object2 = percent2
restricti = planetypel
restrict2 = time 1

percent 1 percent2

openl = NORSi open = NORMUS1
oper2 =NOR oper2 = NOR
operation = operl/oper2 operation =operl/oper2
type znumerical type = numerical

norsi normus 1

English z Not Operationally English = Not Operationally
Ready due to due to
Scheduled Maintenance Unscheduled

Maintenance
concept zmaintenance concept = maintenance
type x numerical type znumerical
subsetof = NOR subsetof z NOR

nor

English zNot Operationally Ready
concept z maintenance
type z numerical
mad efrom z NORS.NORMUS

Figure 6, p1/5

July 21 1979

Goodman The Approach 26

planetype 1

class =set
type = (A7,F4) ;only aircraft in our data base
serialno 2 unkn~own

ti235, ay3, 3

Sbegin z(00: 00, May 1, 73)

unit z date

COMPARE Problem Solving Frame:

AND z(OPERATION,ACTIONI
;COMPARE is a-kind-of operation
;and action

COMPARE-ELE24ENTS=
($R EQUIRE

(#ELTS > 1)
;i.e. more than one element needed
;for compare

;each element Must be different--if
;not different must make different by
;adding restrictions such as over what
;time period the element is to be
;considered

* COMPARE-TYPE2
($REQUIRE

(TYPEE 9(CORRELATE, ANALYZE,MORE,LESS
COMPARE... .1)))

($DEFAULT COMPARE)J
;if no type specified, default
;to TYPE=COMPARE

Figure 6, p2/5

* ~~~July 21 1979 _____

Goodman The Approach 27

INVOKE COMPARE
Scanning through the problem solving frames, a
match was found between OPERATION:CCt4PARE and
FRAME-NAME=COt4PARE. A mapping between the
COMPARE frame and the user problem descriptor
frame will be attempted.

*USER ENVIRONM4ENT ----- > COMPARE FRAME

* OPERATION=COMPARE COMPARE-TYPE :COMPARE
Checking COM4PARE (.}

O.K.
OBJECT1=PERCENT1 (CONS 'PERCENT1 COMPARE-ELEMENT)

Checking... cannot perform
checks. Stacking.

(PUSH CHECKLST
"compare-elements: (#elts>1)"

"com are-elements:

OBJECT2=PERCENT2 (CONS 'PERCENT2 COMPARE-ELEMENT)
Checking..

(#elts> 13....K.

Provisional map completed. [NOTE: might implement the
Popping CHECKLST. CHECKU.ST as an agenda
Checking... where constantly try to
Compare-elements: (#elts>1)...O.K. test the restriction]
Compare-elements: (Yi<>j, elt(i)<>elt(j)).. .O.K.

Phase completed.

Now that a map has been completed, will try to solve the
* "mapped problem" using information provided in other companion

frames to the COMPARE frame. These frames will not be shown
here but they include such frames as MORE, LESS, CORRELATE,
FIELDNAME, etc.

Figure 6, P3/5

July 21 1979

Goodman The Approach 28

They suggest the following solution sequence:
1. Retrieve percentI.
2. Retrieve percent2.
3. Percent 1>Percent2? (because percent 1 and percent2 have

to have numerical values, ">" was
chosen).

Will now try to find an inverse map to map this back onto
the user problem.

The inverse of the original map can be applied to each of
the above steps. Patches may be necessary for it to work.

Retrieve percent. --------- > Retrieve (objectl=)percentl.

Patching... Apply restrictl.
Apply restrict2.

Retrieve (objectl-)percentl for
(restrictl-)planetypel and
(restrict2) time 1.

Patching... Expand percentl.
Patching... Decomposing.

Retrieve NORS and NORMUS for
plane types A7 and F4 for
May 1973.

Form NOR = NORS+NORMUS.
Form percent1 -NORS/NOR.

Retrieve percent2. --------- > Retrieve (object2=)percent2.
Patching... Apply restrictl.

Apply restrict2.
Retrieve (objectl-)percent2 for
(restrict 1-) planetype 1 and
(restrict2-) time 1.

Patching... Expand percent2.
Patching... Decomposing.

Retrieve NORS and NORMUS for
plane types A7 and F4 for
May 1973.

Form NOR = NORS+NORMUS.'
Form percent2 =NORMUS/NOR.

Percentl>Percent2?--------- > Is percentl more than percent2?

O.K.

Figure 6, p34/5

July 21 1979

]oodman The Approach 29

Patching...Recombining ..Smoothing...
(smoothing will be done by numerous heuristics;
how well it works depends on the quality of the
heuristics]

1. Retrieve NORS and NORMUS for plane type
A7 and F4 for May 1973.

2. Form NOR = NORS+NORMUS.
3. Form percentl = NORS/NOR.
4. Form percent2 = NORMS/NOR.
5. Display table of NORS, NORMUS, NOR, PERCENTI,

PERCENT2, PLANETYPE, and DATE.
6. For each row, is percentl>percent2?

r

A Simple Example of Problem Solving

figure 6

July 21 1979

Goodman The Approach 30

The actual detection that a problem is INCOMPLETE is harder than the gap
filling process just described. Almost any problem in our domain at least
"suggests" a solution by stating what is wanted. If one can "zero in" on what
is requested, then drawing in all world knowledge relating to it should help
detect if relevant information is missing. This might be a place where a
mini-production system can be used. By putting the instantiated frames in a
working memory (i.e. short-term memory), a general set of rules could then
fire and try to fill in the gaps. Also drawn in by the rules would be so-
called "expert problem frames" (in reality they would be the more general
frames in the hierarchy of problem solving frames) that indicate the minimal
kinds of things required to solve this particular class of problems.

For example, consider the input "Compare flights." and assume that no
past context exists. In light of the last example, you can see that this
input is incomplete because the COMPARISON task requires a minimum of two
entities for a comparison to be performed. The problem solving frame
COMPARISON (and other frames beneath it in the hierarchy) and the semantic
frame FLIGHT would be drawn in. A set of production rules would fire that
read that the minimal requirements for the COMPARISON frame to be activated is
that two or more entities be available for comparison. Since "flights" does
not satisfy this requirement, the FLIGHT frame would be scanned to see if
there is a way to expand it to two or more entities. It would find that
"flights" could be partitioned by any combination of plane series types, plane
serial number, time period, and so forth. If past context was available, a
search backwards for such partitions could be initiated. In this case, since
no past context exists, the user would be asked to partition "flights" using
one or more of the mentioned entities.

V.4 Assimilation

In the particular case of JETS, it would be beneficial if the "answers"
themselves to particular queries by the user became part of the knowledge
base, too. This way a user could refer directly to the last answer--either by
stating some of the information returned or by stating "...from the last
answer..."--in formulating the newest request. I plan to integrate the answer
into the knowledge base in two forms. The first would be generating a set of
frames that describes the answer in total. This would be done by linking the
actual values from the answer into the frames instantiated during the
statement of the problem. Should the answer be too long or involved, a second
method would be used: instead of putting the actual answers into the frames,
a description of the answer and pointers to a set of temporary files that
contain the actual data returned would be employed.

V.5 Efficiency

Models of both the relational data base and the formal query language
could be used to allow more efficient solutions to be generated. The

July 21 1979

Goodman The Approach 31

structure of a data base (in terms of how the relations are formed) and the
capabilities of the query language (in terms of being able to avoid
duplication of searches in multiple relation requests, built-in functions,
etc.) can strongly influence how hard it is to retrieve certain data types.
The data base model could contain a hierarchial description of the
relationships between different fields and relations and definition of non-
exisitent fields that can be created from existing fields. It should provide
data base "views" for different users ("overlays") and provide advice on
efficiency considerations in search strategy selection (e.g. which relations
provide best filter so that in a multiple relation query can search the
relation providing the best filter first; heuristics that take into account
collected statistics on the number of data cards in each relation, etc.). The
query language model could be designed to allow easier movement to a new data
base, easy change to a new query language and easy addition of new features to
the current query language. In summary, the data base and query language
models' principal goal is to keep the natural language portion of JETS from
having to know anything about the query language or the structure of the data
base.

[uy 1 97

~July 21 1979

Goodman 32

VI

In conclusion, I would like to summarize the principal goals of my work:

1 to classify the kinds of problems occurring most often in a natural
language environment (and in particular, in our user environment),

2 to find structures to represent general descriptions of problems and
solutions,

3 to develop powerful routines to match these general problem descriptors to
user requests,

4 to generate ways to solve the problem, and

5 to integrate the answers back into the general knowledge base for future
reference.

During this process, I hope to be able to have the system generate
English descriptions of its plans for solving problems.

July 21 1979

Goodman Historical Look at Previous Representations for Problems 33

APPENDIX A

Historical Look at Previous Representations for Problems

A.1 State Spaces and Problem Reduction Operators

A problem solving task could be defined as a graphical structure
consisting of a set of nodes--representing the possible states--and a set of
links--representing the possible operations that can be applied to the states
to transform them into a different form. The hope is that the application of
an operatior to a description of the current state will reduce the problem to
a new state that is hopefully closer to the goal or to subproblems that can

also be solved. Such a process can be performed by relatively automatic
procedures. What is generated during this process is called a "search tree".
A major difficulty with such a searching process is the combinatorial
explosion of possible paths in a search tree that can result. This occurs
because the application of the operators to the current state can result in as
many new states as the number of operators. Thus, continuing in this fashion
for very long can result in an extremely "broad" search tree. To help cut
down on the number of nodes investigated in the tree, heuristics can be
employed to suggest which nodes to investigate first (because those nodes seem
most likely to be closer to the solution) and to prune nodes that cannot lead
to a solution. The use of heuristics can lead to another problem called the
"Horizon effect" FBERLINER]. The horizon effect occurs when the heuristics
select certain nodes to investigate over others because they see short-term
gains. Those short-term gains, may not, in the long-term, have gotten you any
closer to the goal. In fact, investigating them may have kept you from
following a path to the goal.

A.2 Generate and Test Paradigm

A problem could be thought of as: (1) a TEST for a class of symbol
structures (the solutions of the problem), and (2) a GENERATOR of symbol
structures (the potential solutions). To solve a problem would mean to
generate a structure, using (2), that satisfies the test of (1). If the
problem cannot be solved directly, it is often possible to search for a
solution. For intellectually difficult problems, the number of possibilities
to be searched is so large (sometimes even infinite) that for all practical
purposes there is no exhaustive procedure. Since this closely parallels state
spaces, heuristics can be employed to define and modify the search. Thus a
heuristic serves as a FILTER interposed between the solution candidate
generator and the solution candidate evaluator. This is shown in figure 7.

July 21 1979 K

~7!

Goodman Historical Look at Previous Representations for Problems 34

Start

Generator

------------------ >fail

G

Ix
*Heuristic

X is not a H

solution --------

X may be a solution

*Evaluator

t----------

fail E

Generate and Test Paradigm

figure 7

July 21 1979

Goodman Historical Look at Previous Representations for Problems 35

A. 3 Pri LCa1au

First-order predicate calculus is a formal language that can express much
of mathematics and many English statements. It has asmociated with it a small
number of inference/deduction methods for making valid logical deductions of
new statements from a set of given ones. Thus the concept of separation of
"data" and "programs" is clearly embodied. A problem solving task involves
trying to "prove" that the statement is true. This is normally done--instead
of proving it directly--by showing that the negation of the statement is
false. The tree, similar to search trees, is constructed during the process
and a search is made until an invalid statement is generated.

Programs have been written that try to translate English into predicate
calculus formalism. There are two major difficulties that occur here:
(1) deciding which connectives to use when translating the English sentence,
and (2) the unambiguous transformation of the intended meaning of the sentence
into a predicate calculus statement. Ambiguities in English often can only be
resolved by referring to the context in which the sentence appears. Adding
this context to the predicate calculus system would be extremely difficult and
awkward.

A few attempts have been made to try to express subsets of English using
predicate calculus formalisms. I will discuss one of the systems that was
developed. QA3 was a natural language understanding system that could accept

a restricted subset of English used to describe a wide variety of topics
[GREEN]. The system used first-order logic as its language and a theorem-
prover as its deductive mechanism. The goals followed while creating QA3
include: (1) finding a language general enough to represent reasonable
questions, answers and data about the domain; (2) the ability to search
efficiently the stored data for relevant information for a particular request;
(3) the ability to derive an answer to a question even when the answer is not
explicitly stored; and (4) the ability to easily add or delete facts from the
data. So QA3's knowledge of the world is expressed as a set of axioms and the
questions asked of the system are presented as theorems to prove. For
example, the fact "CSL is a building" could be encoded as the axiom
"BUILDING(CSL)". The question "Is CSL a building?" could be formulated as the
theorem to prove "BUILDING(CSL)". The kinds of facts and theorems encoded can
be of varying complexity, as can be seen in the example below.

Fact: A robot is a machine.
STATE4ENT: (Yx) [ROBOT (x)-=>MACHINE (x)]
Fact: Rob is a robot.
STATEMENT: ROBOT (Rob)
Fact: No machine is an animal.
STATEMENT: Nx) EMACHINE(x)==> ANIMAL(x)
Question: "Is every thing an animal?"

(Vx)ANIMAL(x)
Answer: No, x=Rob.

The answer indicates tANIMAL(Rob) is a theorem.

The actual construction of answers utilizes the Resolution method of proving
theorems. The resolution method is simply a method of proof by contradiction.

July 21 1979

Goodmu±n Historical Look at Previous Representations for Problems 36

One assumes that the negation of the theorem to be proved is true, and tries
to find a contradiction from the negation and the original premises.

QA3 exhibits the weaknesses found in predicate calculus based question-
answering systems mentioned earlier: the trouble with deciding what
connectives to use and the inability to handle ambiguous input. It also shows
a problem that is central to such systems--namely deciding the meaning of the
objects of the system. When we have a predicate such as "BUILDING(CSL)", we
have asserted something about "CSL". However, we do not really know what it
means for "CSL" to have the attribute "BUILDING". My feeling is that the
predicate calculus formalisms stop too soon in defining the meaning of
concepts. Any natural language system that can hope to ever handle the
complexities of everyday English must go deeper in defining the meaning of
objects, actions, etc.

July 21 1979

Goodman Other Approaches to Problem Solving 37

APPENDIX B

Other Approaches to Problem Solving

B.1 Expert Problem Solvers

It would be useful at this point to mention the specialized problem
solving systems designed to work in one environment. These systems are
designed to contain a knowledge base of all the important facts in a domain.
Existing systems have expertise in organic chemistry (DENDRAL [FEIGENBA]),
medicine (MYCIN [SHORTLIF]) (INTERNIST [POPLE]), and financial consulting
(TIERESIAS [DAVIS76]). The TIERESIAS system is a good representation for the
state-of-the-art today. It was developed in the context of MYCIN as a tool
for constructing knowledge bases for expert systems. One of its applications
was a financial consulting system.

TIERESIAS constructs a large data base of production-rules that encode
specific knowledge about the domain. A numerical scale is used to indicate
the "worth" of the suggestion made by the production rule. A sample
production rule created with TIERESIAS for the financial consulting program
follows (the production rule is not actually encoded in a natural language
form).

If 1- THE DESIRED RATE OF RETURN ON THE INVESTMENT
IS GREATER THAN 10%

2- THE AMOUNT OF INVESTMENT EXPERIENCE OF THE
CLIENT IS MODERATE

3- THE AREA OF THE INVESTMENT IS NATURAL
RESOURCE DEVELOPMENT

then
1- THERE IS EVIDENCE (.5) THAT THE NAME OF THE

STOCK TO INVEST IN IS GEORGIA PACIFIC.

The system works by initiating a dialogue (i.e. a case study) requesting
information for its short-term memory until production rules begin firing
giving suggestions or requesting more specific information. For adding rules
to the system, TIERESIAS guides an "expert" in a menu-driven dialogue to get
useful information. When it encounters "unknowns" in the rules, it uses
"schemas" to try to figure out what an unknown is or forces the expert to
define the unknown from knowns. The schemas are simply definitions of
concepts such as "stock name" (where Georgia Pacific is a specific stock
name). One of the most interesting problem solving aspect of Davis7 work is
his use of "knowledge about the representations" and "knowledge about
knowledge" itself (META-KNOWLEDGE). He actually encodes production rules that
know general things about other production rules and cause those rules to be
updated depending on changes to the knowledge base.

July 21 1979

Goodman Other Approaches to Problem Solving 38

B.2 PSI: A Program Synthesis System

Another approach in problem solving are the automatic programmers. These
are systems that accept an input describing how a simple program can be
written to perform a required task and output a program to perform that task.
The PSI system [GREEN] can write a program in LISP if it is given step-by-step
English descriptions of the program steps. This description should employ
little "internal knowledge" so that PSI can generate high level specifications
of what the user wants done. In fact, PSI relies heavily on the use of
knowledge about programs in general instead of on problem solving. This
knowledge on programs is used to tie "low level" descriptions of the program
together (i.e. looks at request by user as representing several lines of a
program but not necessarily in the correct order).

PSI's operation can be broken into two phases: the acquisition phase,
which acquires the model of the program; and the synthesis phase, which
produces a program from the model. Sentences are first parsed, then
interpreted and finally stored as a program specification. The parser is a
general English parser that utilizes knowledge about English usage. The
interpreter knows much about program synthesis, using both knowledge about
programming and about the topic under discussion. A dialogue moderator is
used to guide a dialogue with the user--selecting or suppressing questions.
It tries to keep the user and PSI from straying away from each other. The
program specification and program model are major parts of PSI. Both are high
level program and data structure description languages. The program model
contains completely specified high level algorithm and information structures.
The program net, on the other hand, forms a loose program descriptor. An
overview of the PSI system can be seen in Figure 9 below.

July 21 1979

3oodman Knowledge Representation Systems 39

USER

ENGLISH LOOSE VERY HIGH LEVEL iNPUT-CUTPUT PAIRS

SENTENCES LANGUAGE STATEMENTS ANO TRACES

so* Loose very

Parser *so high level
l anguage

~~exper t/rtse...•. Trace and example

PARSES inference expert

Interpreter

'*.*expert

PROGRAMI NET /

Program , o'el builder

PROGRAM MOOEL

Efficiency expert

HIGH LEVEL LANGUAGE PROGRAM

Convent ional
complo er

1ACHINE LANGUAGE PROGRA

Overview of PSI

figure 8

July 21 1979

Goodman Knowledge Representation Systems 40

APPENDIX C

Knowledge Representation Systems

C.1 FRL

FRL [ROBERTS] is a facility for constructing and using frames. It
consists of a template for a specialized data structure (the frame) and a
collection of LISP functions for defining frames, storing and retrieving
information. The sub-structures of a FRL frame are slot, facet, datum,
comment and message. A description of an FRL frame is shown below.

(framel
(slotl (facetl (datuml (labell messagel message2 ...)

... more Comments ...)
(det.u2 ...

(facet2 (datuml (labell messagel message2 ...) ...) ...)
. ..)

(slot2 (facetl (datuml (labell messagel ...) ...) ...) ...)

Slots are composed of facets. Facets are typically such things as $VALUE,
SDEFAULT, $IF-ADDED, $IF-REMOVED, $IF-NEEDED, $REQUIRE, etc. $VALUE simply
indicates that the data that follows in the list represents particular values
of the slot. $DEFAULT tells what values can be assumed if no particular
values have been assigned to the slot under the $VALUE facet. $IF-ADDED is a
demon that is triggered whenever a value is put into a slot. $IF-REKOVED is
activated when a value is removed from a slot. These demons are useful
because they can do the "housecleaning" necessary when values are added or
removed fram a slot. Their activities include such things as changing values
in other slots to reflect the changes in the current slot. $IF-NEEDED is
activated when a value is requested from a particular slot but none is there
and no default value has been provided. It can ask the user directly for a
value or can construct a default value from data provided in other slots. The
SREQUIRE facet is used to make sure a value assigned to a particular slot
satisfies particular requirements assigned by the user (such as the value must
belong to a particular class, etc.). Comments and messages can be tacked to
values assigned to slots to provide more specific information about the value
that might be needed later on. A sample FRL frame is shown below.

July 21 1979

Goodman Knowledge Representation Systems 41

(fassert CSL
(ako ($value (BUILDING)))
(english-term ($value (Coordinated Science Laboratory)))
(purpose ($value (research)))
(staff-member ($if-added (payroll))

(sif-removed (payroll))
($require

((memq (fget :value -degree)
"(BS BA MS MA PHD)))))

(floors ($value
(6)))

(computers (Sdefault (DEC10)))

The FRL frames can be built up into a large tree structure using two FRL
system functions as slots: AKO (A Kind Of) and INSTANCE. These provide paths
for data to be inherited. AKO and INSTANCE are actually inverses of each
other (so defining a relation with one of them automatically defines another
inverse relation with the other). The resulting hierarchy of frames that is
derived from this establishes a distribution of information with the more
general information stored higher up in the hierarchy where it can be
inherited by more specialized concepts lower in the hierarchy.

C.2 KRL

KRL [BoBROW] [TENNAN8O] was designed to try to model how humans represent
and use information, thus giving it a more psychological foundation than FRL.
As in FRL, knowledge in KRL is organized around conceptual entities that have
associated descriptions and procedures. The descriptions can represent
partial knowledge about the entity and allow multiple descriptors so that the
entity can be examined under different points of view. A PROTOTYPE is an
object that is used as a basis for comparison with other entities in memory.
It describes a class of concepts instead of a particular instance, i.e.
particular objects are described through comparison to a prototype.

(a Building with

name - "Coordinated Science Laboratory"
(an Address) - "Springfield Avenue")

"Building" is a prototype used in the description of a
particular building.

There are several kinds of units in KRL ("unit" is simply the KRL term
for "frame"). The units come from the set of category types: Basic,
Specialization, Abstract, Individual, Manifestation, Relation, and
Proposition. Different sets of KRL procedures are invoked depending on what
category type a unit is. Basic units are simple mutually exclusive partitions

July 21 1979

Goodman Knowledge Representation Systems 42

of the world into different objects. No individual can be in two distinct
basic categories. This makes it easy to decide if a particular object fits a
description. Specialization units provide a refinement of a basic category.
An Abstract unit describes concepts that are not physical objects. It is used
to hold a set of descriptions and procedures that can be inherited by another
entity that is defined by using the abstract unit as a prototype. The
Individual units describe unique entities in the world that is being modeled.
So EVENT137 in the example in Figure 9 below defines a unique event.
Manifestation units seem to be a "catch-all" unit that can be used to define a
particular demonstration of an individual in one context (i.e. from one point-
of-view), to describe an individual using time-dependent descriptions without
the need of creating another manifestation and to describe an individual whose
unique identity is not yet known (e.g. "the murderer" instead of "John Doe").
The Relation unit provides a means of representing a relationship (or
predicate) as an abstract mapping while the Proposition unit represents each
instantiation of the relationship [TENNAN80].

The Match framework in KRL is superior to that of FRL because it allows
limits to be placed on the search time and depth during the comparison process
of different units. When these limits are reached, KRL can explain why it
gave up the search and what state it was in at the time. As in FRL,
procedures can be attached to the units to facilitate the matching and
deduction process.

C.3 KLONE

KLONE[BRACHM78] differs from FRL and KRL because it embodies semantic
nets as its knowledge representation formalism instead of frames. These
semantic nets are simply sets of nodes with directed arcs. The nodes
represent concepts and the links represent relations between concepts. KLONE
tackles a problem that has been prevalent in the use of semantic nets to
represent knowledge--the inconsistent definition of what a node and link can
be [see WOODS75, pp. 35-81]. No attempt had been made at cleaning up semantic
nets until Brachman and Woods' work [WOODS75J [BRACHM77]. Brachman provided a
more rigorous foundation for defining concepts (represented by nodes) and
associations (represented by links). He accomplished this with the use of
primitives. For examile, a special primitive link was provided to distinguish
links used to define properties at concept nodes and those used to instantiate
properties at instance nodes.

Throughout his design, Brachman apparently kept in view an ultimate goal
of designing a knowledge representation system (KLONE) that brought
extensional and intensional views of classes into focus. The extensional
description of a class is simply a enumeration of existing and potential
members of that class. It is used to capture the concepts of class membership
and subset relations. The intentional description is more involved. it
defines what it means to belong to a particular class. This is done by
determining and making use of relationships between concepts independent of
the particular objects they apply to. In other words, it describes the
attributes necessary for something to be a member of the class and how these

July 21 1979

-- I.. - -

loodman KCa3aladge Representation Systems 4

[Travel UNIT Abstract ...Travel is the unit name. Its Category type is Abstract.
<SELF (an Event) > .-.description of the Travel unit itself.

(mode (OR Plane Auto Bus)> ...either Plane or Auto or Bus

can fill the slot named mode-
(destination (a City)>]

[Visit UNIT Specialization a specific category of SociallInteract Joe
<SELF (a SocialInteraction))
<visitor (a Person)>
(visitees (Seltf (a Person)))]

[Eventi 37 UNIT Individual .-.a specific event described rrom two viewpoints
(SELF {(a VIisit with

visitor = Rusty .-.The actor is the known unit Rusty
visitees r(items Danny Terry)) ...Items indicates at least Danny and Terry are

(a Travel with set elements in this set
mode x Plane
destination= SanFrancisco))>] ...SanFr..ftIcs is a known unit dcscribing a City

KRL Representation 1ff Rusty's Trip to*Saii Frantcisco

Sample Unit of KRL[B0BROW, p.g. 10)

figure 9

July 21 1979

Goodman Knowledge Representation Systems 44

attributes are related. E.g. "Coordinated Science Laboratory" is a building
but what makes it a building is the fact that it satisfies a broad criteria
such as providing shelter from the elements, being built out of physical
materials, etc. [TENNAN8O].

Out of Brachman's original work came the idea of "Structured Inheritance
Nets" [BRACHM77] [BRAC1K78]. This is where descriptions of structured
conceptual objects are arranged in lattice-like networks and the inheritance
between different descriptions is provided by "structured cables". The types
of cables provided are:

(1) Satisifaction (INDIVIDUAL--->GENERIC)
(2) Restriction (GENERIC--->GENERIC)
(3) Differentiation (GENERIC-->GENERIC).

The "Individual" concepts describe individual objects and "Generic" concepts
provide definitions of conceptual objects. Figure 10 shows what these
structures look like and gives an example of a KLONE representation.

July 21 1979

Goodman 4

Generic Concepts (generic)
Roles

(Schematic templates--NOT prototypes or abstract

individuals)

Individual Concepts

instance roles

(particularized descriptions of Individuals)

KLONE S true tur es(BRACMt78, p~.33]

figure 10

July 21 1979

Goodman 46

VII

(BERLINER] Berliner, H. J.; Chess as Problem Solving: The Development of a
Tactics Analyzer; Ph.D. Thesis, Department of Computer Science,
Carnegie-Mellon University; March 1974;

B[BOBROW) obrow, D.G. and Winograd, T.W.; An Overview of KRL, a Knowledge
Representation Language; Cognitive Science, vol. 1, pp. 3-46;
January 1977;

[BRACH77] Brachman, R. J.; What's in a Concept: Structural Foundations for
Semantic Networks; International Journal of Man-Machine Studies,
vol 9., pp. 127-152; 1977;

(BRACH78] Brachman, R. J.; Theoretical Studies in Natural Language
Understanding; Report No. 3833, Bolt Beranek and Newman; September
1978;

(BROWN] Brown, R.; Use of Analogy to Achieve New Expertise; MIT-AI Memo
AI-TR-403, Massachusetts Institute of Technology Artificial
Intelligence Laboratory; April 1977;

[CHANG] Chang, C. L.; Finding Missing Joins for Incomplete Queries in
Relational Data Bases; Report RJ2145, IBM Research Laboratory, San
Jose; February 1978;

(CODD] Codd, E. F., Arnold, R.S., Cadiou, J-M., Chang, C. L. and
Roussopoulos, N.; RENDEZVOUS Version 1: An Experimental English
Language Query Formulation System for Casual Users of Relational
Data Bases; Report RJ214, IBM Research Laboratory, San Jose;
January 1978;

[DAVIS] Davis, R.; Applications of Meta Level Knowledge to the
Construction, Maintenance and Use of Large Knowledge Bases;
Stanford Artificial Intelligence Laboratory Memo AIM-283; July
1976;

[FEIGENBA] Feigenbaum, E. A., Buchanan, B. G., and Lederberg, J.; On
Generality and Problem Solving: A Case Study Using the DENDRAL
Program; in Meltzer,B. and Michie, D. (eds.) Machine Inteligence
6., Endinburgh University Press, Endinburgh; 1971;

(FININ79] Finin, Timothy, Goodman, Bradley and Tennant, Harry; JETS:
Achieving Ccmpleteness through Coverage and Closure; .roa*e±ags
SJth International Joint Conference Artf

Intelleen ; August 1979 (to appear);

July 21 1979

Goodman References 47

[GINSPA78] Ginsparg, J. M.; Natural Language Processing in an Automatic
Programming Domain; Stanford Artificial Intelligence Laboratory
Memo AIM-316; June 1978;

[GOODMA77] Goodman, B. A.; A Model for a Natural Language Data Base System;
Advanced Automation Group, Coordinated Science Laboratory,
University of Illinois, Report R-798; October 1977;

[GREEN] Green, C., Gabriel, R., Ginsparg, J., Kant, E., Ludlow, J.,
Phillips, J., Steinberg, L., Tappel, S. and Westfold, S.; Prgres
Report on Xnol~dae Based ProgaMMing; System Control, Inc., Palo
Alto; September 1978;

[HALLIDAY] Halliday, M. A. K.; Functional Diversity in Language as Seen from
a Consideration of Modality and Mood in English; Fonationh af
Language, vol. 6, pp. 322-61; 1970;

[HAYES] Hayes, J. R., Waterman, D. A. and Robinson, C. S.; Identifying the
Relevant Aspects of a Problem Text; Cgni Science, Vol. 1, pp.
297-313; 1977;

(HEMPHILL] Hemphill, L. and Rhyne, J.; Models for Knowledge Bases in Natural
Language Query Systems; (submitted for publication);

[MCDONALD] McDonald, D. and Hayes-Roth, F.; Inferential Searches of Knowledge
Networks as an Approach to Extensible Language Understanding
Systems; in Waterman and Hayes-Roth (eds.) Pattern-Directed

Systems, Academic Press; 1978;

[MCDERM77] McDermott, D.; Vocabularies for Problem Solver State Descriptions;

Pc i 9 5.th International Joint Conference sn
Atfca Int.a]agennc; August 1977;

[MINSKY75] Minsky, M.; A Framework for Representation Knowledge; in Winston
(ed.) The s o Qo Vision, McGraw Hill, New York;
1975;

(MOORE] Moore, J. and Newell, A.; How can Merlin Understand?; in Knojl.gm
n Cognition, Gregg, L.(ed.), Lawrence Erlbaum Associates,
Publishers, Potomac, Maryland; 1974;

[NALDA] NALDA (Naval Air Logistics Data Analysis) System Data Requirements
Determination Report; Naval Aviation Integrated Support Center,
Patuxent River, Maryland; 1975;

[NEWELL72] Newell, A. and Simon, H.; Hman Problem Solving; Prentice-Hall,
Inc., Englewood, New Jersey, pp. 72-75; 1972;

(POLYA57] Polya, G.; HowjoSolve 1&; Doubleday & Company, Inc., Garden
City, New York; 1957;

[POLYA62] Polya, G.; Mathemaial i, vol. 1; John Wiley & Sons,
Inc.; 1962;

July 21 1979

Goodman References 48

[POPLE] Pople, H. E., Jr.; The Formation of Composite Hypothese in
Diagnostic Problem Solving--An Exercise in Synthetic Reasoning;
Procings _ jh International Joint Conference &a
Arificia Int*enc; August 1977;

[RAPHAEL] Raphael, B.; =j THINKING COMPUTER Mind Inside Matter; W. H.
Freeman and Company, San Francisco; 1976;

(ROBERTS] Roberts, B. R., and Goldstein, I. P.; The FRL Manual; MIT-Al Memo
409, Massachusetts Institute of Technology Artificial Intelligence
Laboratory; September 1977;

ESHORTLIF] Shortliffe, E. H., et al.; An Artificial Intelligence Program to
Advise Physicians Regarding AntiMicrobial Therapy; m n n
im Research, vol. 6, pp. 544-60; 1973;

[SOWA] Sowa, J. F.; Conceptual Graphs for a Data Base Interface; IBM
Jour. of Research Developement; July 1976;

[TENNAN79] Tennant, Harry; Experience with the Evaluation of Natural Language
Question Answerers; Pr af l i.h International Joint
Conference = A I; August 1979 (to appear);

(TENNAN80] Tennant, Harry; Nu 1An Processiung; Petrocelli, Inc., New
York; (to be published in 1980);

[WALTZ76] Waltz, D.L., Finin, T.W., Green, F., Conrad, F., Goodman, B. and
Hadden, G.; The PLANES system: Natural Language Access to a Large
Data Base; Technical Report T-34, Coordinated Science Laboratory,
University of Illinois; November 1976;

[WALTZ77] Waltz, D. L. and B. A. Goodman; Writing a Natural Language Data
Base System; Pro ings At Jbe =_j International Joint Conference
n Atifi1j&1 Intellesence; 1977;

[WALTZ78] Waltz, D. L.; An English Language Question Answering System for a
Large Relational Data Base; ACM, vol. 21, pp. 526-539.; July,
1978;

[WALTZ79] Waltz, D. L.; Relating Images, Concepts and Words; Pofng
= A= International Joint Qonference = Arficil Intnlegence;
August 1979 (to appear);

[WEBSTER] Westr's 2ictionari; Fawcett Publications, Inc., Greenwich,
Connecticut; 1974;

(WOODS72] Woods, W.A., Kaplan, R.M., Nash-Webber, B.; The Lunar Sciences
Natural Language Information System: Final report; Bolt Beranek
and Newman report No. 2378; June 1972;

[WOODS75] Woods, W.A.; Whats in a Link: Foundations for Semantic Networks;
in D.G. Bobrow and A.M. Collins, eds,Renresentation an
Understanding: Studies. n iv Science, Academic Press; 1975;

July 21 1979

Goodman References 149

£W00DS77] Woods, W. A.; A Personal View of Natural Language Understanding;
SIARI Newlette~r, number 61, pp. 17-20; February 1977;

Jul~y 21 1979

'ILMEI

